

ONE BLUE HILL PLAZA, 10TH FLOOR WWW.OMNESYS.COM
PEARL RIVER, NEW YORK 10965-8689 845 735 5000 VOICE
 845 735 5950 FAX
 888 565 OMNE TOLL FREE

The OMNE™

An Overview of the Omnesys Meta Network Environment™

September 1, 2001

 THE OMNE™

Page 2 of 17

Table of Contents

THE OMNE™ OVERVIEW .. 4
Security and Performance... 5

COMPONENTS OF THE OMNE™.. 6

THE OMNE™ C LIBRARIES ... 7

Java Interface.. 8
THE KIT LIBRARY .. 9

OS Independence .. 9
Modules... 9
Socket Device Interface... 9
Namespace Management .. 9
Versatile Messaging.. 10

THE API LIBRARY ... 10
Object Oriented Design .. 10
Integration With Third Party Libraries .. 10
Remote Administration.. 11
Uniform Design... 11

THE PIPER LIBRARY... 11
THE DATA NORMALIZER LIBRARY .. 11
THE IN-MEMORY HIERARCHICAL DATABASE LIBRARY... 11
THE IN-MEMORY STACK DATABASE LIBRARY .. 12

THE OMNE™ INFRASTRUCTURE PROCESSES ... 13

THE CONTENT BASED ROUTER
™ ... 13

CBR™ Trees .. 13
Subordinate and Peer Modes.. 14
Publish/Subscribe and Request/Reply Paradigms .. 14
Scalability ... 14
Reliable and Highly Reliable Modes .. 14
Quiet Mode.. 15

THE LOCATION BROKER .. 15
THE DOMAIN SERVER .. 15
THE FIELD ID SERVER.. 15
THE LOGGER.. 15

PERFORMANCE OBSERVATIONS .. 16

THE CBR™ .. 16
Reliable Mode ... 16

 THE OMNE™

Page 3 of 17

Highly Reliable Mode ... 16
A DATA NORMALIZER ... 16
AN IN-MEMORY HIERARCHICAL DATABASE ... 16
AN IN-MEMORY STACK DATABASE... 17

 THE OMNE™

Page 4 of 17

The OMNE™ Overview

The OMNE™, which stands for The Omnesys Meta Network Environment, is a
messaging oriented middleware product. It based on a simple and scalable architecture
that is extremely versatile and reliable.

Due to its inherent simplicity, The OMNE™ enables developers to design programs and systems
intuitively and quickly. Such programs and systems are called OmnePresent™.

The heart of The OMNE™ is its patent pending Content Based Router™ (CBR™) process. This
process routes messages between OmnePresent™ programs using the request/reply and
anonymous publish/subscribe paradigms. Simple and versatile, the CBR™ scales effortlessly to
support just a few clients as easily as it supports thousands.

Conventional data distribution systems use the request/reply paradigm in a peer-to-peer
topology. The OMNE™ uses a “Hub-and-Spoke” topology arranged in a CBR™ Tree for both
request/reply and anonymous publication/subscription.

REQUEST/REPLY: a paradigm in which messages are exchanged between a
requesting process and a replying process. The requester (the client) sends a request
message to a request handler (a server or service provider). The request handler (the
replying process) sends response messages back to the requester..

PUBLISH/SUBSCRIBE: a paradigm in which messages are exchanged between
processes that publish messages to an intermediary process (a message distributor) and
processes that subscribe, for published messages, to an intermediary process.

ANONYMOUS PUBLISH/SUBSCRIBE: an implementation of the publish/subscribe
paradigm such that only the consumers of a published message (the subscribers) can
define the criteria by which a subscription to it may be made. D

at
a

Pr
oc

es
si

ng
 P

ar
ad

ig
m

s

PEER-TO-PEER TOPOLOGY: Clients connect directly to servers. Every client
must be connected to every server from which it wants to receive data. As the number
of clients and services increases, the demand on the infrastructure rises exponentially.

HUB AND SPOKE TOPOLOGY: Servers send all available data to a CBR™ or
CBR™ tree, and the CBR™ distributes the data to those clients who have an interest in
it. The decision to accept or not accept data lies solely with the client. This topology
is readily scalable. H
ub

-a
nd

-S
po

ke

To
po

lo
gy

 THE OMNE™

Page 5 of 17

A model Hub-and-Spoke configuration is shown in the figure below.

Figure 1 - CBR™ "Hub and Spoke" Topology

Security and Performance
Security is optional to take advantage of performance benefits when operating in unencrypted
mode where The OMNE™ is operating in a secure environment or where security is not a
concern. However, if inherent security is required, OMNE™ provides Secure Socket Layer
compliance. When using SSL, every single message that is sent is encrypted and then decrypted
when received. SSL also provides authentication using digital certificates.

Client

Data Stream

Client

Client

OOmmnnee
CCBBRR™

Client

Data Stream

 THE OMNE™

Page 6 of 17

Components of The OMNE™

The OMNE™ is comprised of a set of C libraries, associated infrastructure processes, and general
purpose utilities. A Java interface, called OmneVerse™, is also available.

Libraries - provide methods that enable developers to write distributed application processes
that communicate with each other. They are provided to shield developers from the mechanics
of application independent functions such as service location, transport, event handling,
encryption, automatic reconnection after an outage, message formatting, message parsing, and
more.

Associated infrastructure processes - route and log messages, authenticate users, and maintain
data and meta data repositories.

General purpose utilities – provide developers and administrators with runtime tools to
configure and manage all of the processes of an OmnePresent™ system.

 THE OMNE™

Page 7 of 17

The OMNE™ C Libraries

The core libraries are called the Kit and the API. The Kit library is organized as a collection of
software modules, each with its own responsibilities. The API library, using the Kit library as its
foundation, implements the basic communication paradigm of The OMNE™.

The API and the Kit are provided on various platforms such as Solaris, Linux, and Windows NT
and 2000. Wherever possible (Solaris), they are provided in 64 bit mode. This natively
compiled 64 bit library makes available the full 64 bit address space.

There are four sets of libraries built using the API and Kit libraries , the Piper Library, the Data
Normalizer Library, the In-Memory Hierarchical Database Library, and the In-Memory
Stack Database Library.

OmneVerse

Kit

API

Piper Library

Kit

API

Data
Normalizer

Library

Kit

API

IMHD
Library

Kit

API

IMSD
Library

Figure 2 - The OMNE™ Libraries

• Piper Library: a thin library for handling the physical connection to third party systems.

• Data Normalizer Library: a library that provides a convenient frame work for the

conversion of data between third party formats and the format most commonly used by
The OMNE™.

KIT: a library consisting of a set of modules that provide operating system independence for
i/o, memory management, and event handling, as well as functional modules such as lists,
compression modules, and sequence matching.

API: a library that sits on top of the KIT and provides a set of routines for managing devices.

C
or

e
Li

br
ar

ie
s

 THE OMNE™

Page 8 of 17

• The In-Memory Hierarchical Database Library: a library that provides a convenient

framework for the implementation of an in-memory, hierarchical, and optionally
replicated database.

• The In-Memory Stack Database Library: a library that provides a convenient

framework for the implementation an in-memory, stack database generally used to
maintain lists of messages in reverse order of their receipt.

Java Interface
The Java interface to The OMNE™ is called OmneVerse™. The functions of the Kit and the API
are provided by Java classes compiled into a single JAR file.

 THE OMNE™

Page 9 of 17

The Kit Library

The Kit library is object-oriented in design and implementation. Each module provides entry
point functions for initialization and un-initialization. References to instances are viewed as
opaque pointers by the developer and implementation details are hidden from view. All
operations are by means of methods operated on instance handles created during a module’s
initialization.

OS Independence
The Kit library provides a uniform interface to operating system calls like file, socket, time and
event operations. This solves the problem of porting to a different platform from the point of
view of the developer, and it allows The OMNE™ to provide functionality above and beyond that
provided by native system calls.

The concept of a self-delimited OS Message is defined which enables atomic reads and writes for
file and socket devices (however, raw reading and writing is supported).

The native system calls used by the Kit library (in Windows NT, Windows 2000, Linux, and
Solaris) are a conservative set guaranteed to be provided on most platforms.

Modules
The Kit library provides implementations of various data structures and constructs like linked
lists, hash functions and tables, dynamic arrays, b-trees, compression and encryption, and
memory managers for use by The OMNE™ or by the developer.

Socket Device Interface
The socket device interface integrates various protocols including TCP, UDP, HTTP and SSL.
The interface also incorporates a measure of authentication using a handshake protocol that
verifies the server to the client. This is implemented as a precautionary measure to determine
whether the connection endpoint speaks the correct language and is the correct socket for the
desired service.

Namespace Management

The namespace of sockets provided by the kernel (protocol, IP address and port number) is
subsumed into an OMNE™ namespace that consists of domain and name. This is implemented by
an OmnePresent™ server process (the Location Broker, discussed later in this document) which
manages the maps that translate back and forth between the two schemes. This liberates

 THE OMNE™

Page 10 of 17

developers, users, and administrators from always having to know the actual location of
connection endpoints.

Versatile Messaging
One of the Kit library modules defines a tagged message format. The field identifiers (tags) are
64K in number, of which a small subset are reserved for use by the API library and by some of
The OMNE™ infrastructure processes. The semantics of the other field identifiers are left to
interpretation by user (developer) defined OmnePresent™ applications and can mean different
things for different applications, as desired. Each message can have more than 2 billion items,
each of which is tagged by one of the 64K different values. While 64K tags have proven to be
adequate, the design allows for the expansion of field tags to an arbitrary number, if so required.

An arbitrary number of these tagged messages can be marshaled into an OS Message. The
OMNE™ makes aggressive use of buffer packing to optimize network throughput.

The API Library

The API library consists of a set of routines that provide the developer with the quickest means
to write an OmnePresent™ process that interacts with an OMNE™ infrastructure. Basic functions
are provided that allow a user to connect to other OmnePresent™ processes, read and write files,
and exchange and process messages. Other API library functions build upon these to provide
publish/subscribe and request/reply services. The tasks of event handling, connection
management, and remote administration are handled by the API, freeing the developer to write
hook functions that process messages. The API library calls upon various modules in the Kit
library during operation. Both asynchronous and synchronous network operations are supported.

Object Oriented Design
The API library, like the Kit library, is designed with object-oriented principles. The concept of
a device is abstracted from timers, files, and sockets. Also, the concept of an I/O object is
abstracted from files and sockets. A device open or close function will behave differently
depending on the type of device it is operating upon.

Integration With Third Party Libraries
A typical OmnePresent™ application makes use of the OMNE™ event loop, in which various
entry points are provided for initialization and message processing. However, in the case of an
application using a third party library with its own event loop, it is possible to make the OMNE™
event loop run subservient to the native event loop. A timer is registered with the third party
event loop which then services all OMNE™ devices (sockets, files and timers) before returning.

 THE OMNE™

Page 11 of 17

A simple linear back-off algorithm is followed in determining the timer interval, to allow the
OMNE™ event loop to adapt to idle or busy conditions efficiently.

Remote Administration
All OmnePresent™ applications can be administered remotely. Device statistics can be
monitored, and devices can be added, removed, opened or closed at will. OmnePresent™
applications, by default, open a listener socket that provides this administration service.

Uniform Design
All processes, whether user (developer) defined applications or infrastructure processes, are built
using the same set of OMNE™ libraries. This uniformity makes administration simple and
maintenance easy.

The Piper Library
This library facilitates the connection between third party systems and OmnePresent™ programs
built using the Data Normalizer Library. OmnePresent™ programs built with the Piper Library
package third party messages and send them to an OmnePresent™ data normalizer (and vice
versa).

The Data Normalizer Library
This library provides the developer with tools needed to build a program that manages the
conversion of data between third party formats and the formats most commonly used by
OmnePresent™ systems. Additionally this library provides developers and system administrators
with the tools to manage data flows to and from multiple third party systems within a single
process.

The In-Memory Hierarchical Database Library
The in-memory hierarchical database library provides the developer with tools needed to build
an in-memory, hierarchical database. The hierarchy (key definition) of the database and other
parameters are configurable. Processes built using this library connect to a CBR™, subscribe
based on their hierarchy and export services for lookup and update (add, delete or modify).
Some features provided by this library are :

• The scope of the lookups can be specified - defining the key-set for any point of
the data tree will retrieve data at that level including a list of the keys at the next
level allowing one to walk down the tree without knowing the complete key-set
beforehand.

• Selection criteria can be specified to filter the entire database for matching
records.

 THE OMNE™

Page 12 of 17

• Multiple occurrences of data values are handled optimally by reference counting.
• A snapshot of the database can be written to a file by a remote administration call

to preserve the state between invocations.

Redundant hierarchical databases can be synchronized by a method provided by this library or by
methods provided by the CBR™. When using the library’s method, updates are written to a file
so that a database can be restarted and its state recreated.

The In-Memory Stack Database Library
The in-memory stack database library provides the developer with tools needed to build an in-
memory, stack database (an in-memory stack database is generally used to maintain lists of
messages in reverse order of their receipt – a trade history database, for example) . Processes
built using this library connect to a CBR™, subscribe based on a configurable key, and export
services for lookup and update. As each publication message arrives from the CBR™ they locate
the key field and its data and pop the message on a stack associated with that data. These
processes can be configured to restrict the storage on the stack to a subset of the data in the
message.

 THE OMNE™

Page 13 of 17

The OMNE™ Infrastructure Processes

The Content Based Router™
The Content Based Router™ (CBR™) lies at the heart of The OMNE™. The CBR™ and its client
processes are arranged in a Hub-and-Spoke topology. All messages between participating clients
are routed through the CBR™ (peer to peer communication without using a CBR™ is supported
but not generally used).

CBR™ Trees
A CBR™ can be a client of another CBR™ and several CBR™s may be connected in a tree
structure. This allows an OmnePresent™ system to scale without redesign as its demand for use
and performance expand. As new demands (new users, etc.) arise, CBR™s can be easily added to
expand the capacity of the system. The clients of a CBR™ tree in effect belong to a virtual CBR™
that enables them to communicate with each other as if they were all clients of the same CBR™.

Data
Provider

Parent
CBR

CBR CBR

CBR

Client

Client

CBR

Client

CBR

CBR

Figure 3 - CBR™ Tree

 THE OMNE™

Page 14 of 17

Subordinate and Peer Modes
CBR™ trees may connect in one of two modes. A subordinate (read only) mode where one tree is
subordinate to the other and a peer mode where two trees connect to each other. In the
subordinate mode the subordinate (connecting) tree can get any publication from and submit any
request to its superior tree but cannot send publications nor respond to requests from its superior
tree. In the peer mode each tree can pull data from the other as long as the other is configured to
permit it (pull in this case is actually the establishment of criteria so that data is pushed). The
subordinate mode is generally used when a single system (a real time ticker plant, for example)
feeds data to several similar but separate OmnePresent™ systems (a development system, a UAT
system and/or a production system). The peer mode is used when a relatively small subset of
data from one tree is useful in another or when the link between two trees is slow (hence the
need to restrict the data exchange) or expensive. It can also be used when data exchange
between the trees has to be monitored or regulated.

Publish/Subscribe and Request/Reply Paradigms
Both the anonymous publish/subscribe and the request/reply paradigms are supported by the
CBR™. A client subscribes to data messages by indicating various fields and/or field/data
combinations of interest. The CBR™ scans each message that it receives, compares it with the
subscription criteria of each client and forwards it to matching clients. Requests for a service
made by a client are forwarded to a client that has registered the service, and the response is
returned to the requesting process. Various simple paradigms of service registration (forward to
all, round robin, etc.) are implemented. The round robin model allows a simple yet effective way
of achieving load balancing.

Scalability
Since all messages are constructed of field/data pairs, this subscription mechanism allows for a
complete description of the message itself (the content) without resorting to ad hoc descriptive
subjects and headers. The decision to view or not view a message lies solely with the consumer
of the message (with help from its CBR™), not with the publisher. The publisher is relieved of
the responsibility of having to know its consumers. This greatly eases the deployment and
maintenance of distributed systems. When new consumers appear, existing publishers are
unaffected.

Reliable and Highly Reliable Modes
The CBR™ and its clients are capable of operating in a highly reliable mode. In this mode, all
messages are tagged with a sequence number and stored by the sending process (the client, in the
case of the publisher and the subscriber) and the CBR™ in indexed data files. Each message is
explicitly acknowledged by the receiver. It then is removed from the files at the sender’s
convenience. When a connection is recovered after a disruption, the last sequence number
acknowledged is exchanged and unacknowledged messages are sent/resent. A CBR™ stores all

 THE OMNE™

Page 15 of 17

the messages from various publisher clients in a single repository. Clients that have reconnected
after a break are sent only the subset of stored messages that match their subscription criteria.

Quiet Mode
A CBR™ also helps its clients operate in quiet mode. Such a client may subscribe for messages
and register services but while in quiet mode its publications and service responses are inhibited.
This mode is used to ensure that only one of a set of redundant services provides data yet all
members of the set update similarly.

The Location Broker
The Location Broker is built using the In-Memory Hierarchical Database Library. It maintains
location information about sockets, organized by name. It is one of the few processes that,
though it connects to a CBR™ tree, gets its main data directly from a CBR™. A Location Broker
replicates using the method provided by the In-Memory Hierarchical Database Library.

The Domain Server
The Domain Server is built using the In-Memory Hierarchical Database Library. It maintains
location information on Location Brokers, organized by domain name (it is effectively the
Location Broker’s location broker). It is one of the few processes that, though it connects to a
CBR™ tree, gets its main data directly from a CBR™. A domain server replicates using the
method provided by the In-Memory Hierarchical Database Library.

The Field Id Server
The Field Id server is built using the In-Memory Hierarchical Database Library. It is configured
with the following hierarchy : application name, user id. It provides a general repository for
storing a cross reference for field identifiers and their meanings (usually for display purposes).
Data stored at the application level usually corresponds to an application’s default meanings for
field identifiers. Data stored at the user id level usually corresponds to the meanings for the field
identifiers as defined for/by the user associated with the particular user id for the particular
application.

The Logger
The Logger is the recipient of messages sent by processes using the logging facilities provided
by the Kit. It is one of the few processes that, though it connects to a CBR™ tree, gets its main
data directly from a CBR™. It is the only process that by design gets its data using UDP sockets.
Upon receipt of a logged message, a logger locates a text field and writes its data to its output file
(enhanced with receipt time and date info). It then publishes the message (enhanced similarly) to
its CBR™. The logger is part of an isolated CBR™ tree (only loggers connect to this CBR™ tree)
to which monitoring processes connect to view commonly logged information in real-time
(message rate info, subscription info, etc).

 THE OMNE™

Page 16 of 17

Performance Observations

The CBR™
Reliable Mode
In every day use at one client site, where an OMNE™ is used to receive and distribute real-time
market data, we have observed the following :

• The top CBR™ of the market data tree gets between 10,000 and 12,000
messages per second during the NY market open (9:30am – 10:00am,
Monday – Friday).

• Each message tends to span more than 150 bytes.
• This CBR™ then sends nearly all (> 95%) of its messages to 1 subordinate

CBR™ and to a process that timestamps each message and writes them to a
file.

• This CBR™ also sends 10% – 15% of its messages to a subordinate CBR™
that distributes subsets of them to various trading systems and user’s
screens.

• Effectively, this CBR™ is handling more than 30,000 – 36,000 messages per
second routinely.

In tests we have observed that a single CBR™ can handle more than 60,000 messages per second.

Highly Reliable Mode
In tests we have observed that a single CBR™ can handle more than 7,500 messages per second.

A Data Normalizer
In every day use at one client site, where an OMNE™ is used to receive and distribute real-time
market data, we have observed that a process built using the Data Normalizer Library gets,
translates and sends between 9,000 and 10,000 messages per second to a CBR™ during the NY
market open (9:30am – 10:00am, Monday – Friday).

An In-Memory Hierarchical Database
In every day use at one client site, where an OMNE™ is used to receive and distribute real-time
market data, we have observed that a process built using the In-Memory Hierarchical Database
Library receives between 10,000 and 12,000 messages per second from its CBR™ during the NY
market open (9:30am – 10:00am, Monday – Friday). This process maintains real-time

 THE OMNE™

Page 17 of 17

information (prices, sizes and volumes) on more than 850,000 primary keys and on more than
1,100,000 secondary keys (financial instruments).

An In-Memory Stack Database
In every day use at one client site, where an OMNE™ is used to receive and distribute real-time
market data, we have observed that a process built using the In-Memory Stack Database Library
receives between 2,000 and 3,000 messages per second from its CBR™ during the NY market
open (9:30am – 10:00am, Monday – Friday). This process maintains real-time information
(trade history) on more than 85,000 keys (financial instruments).

